Predicting Software Defects through SVM: An Empirical Approach
نویسندگان
چکیده
Software defect prediction is an important aspect of preventive maintenance of a software. Many techniques have been employed to improve software quality through defect prediction. This paper introduces an approach of defect prediction through a machine learning algorithm, support vector machines (SVM), by using the code smells as the factor. Smell prediction model based on support vector machines was used to predict defects in the subsequent releases of the eclipse software. The results signify the role of smells in predicting the defects of a software. The results can further be used as a baseline to investigate further the role of smells in predicting defects.
منابع مشابه
Predicting software defects in varying development lifecycles using Bayesian nets
An important decision in software projects is when to stop testing. Decision support tools for this have been built using causal models represented by Bayesian Networks (BNs), incorporating empirical data and expert judgement. Previously, this required a custom BN for each development lifecycle. We describe a more general approach that allows causal models to be applied to any lifecycle. The ap...
متن کاملAn Empirical Comparison of Field Defect Modeling Methods
In this study, we report empirical results from forecasting field defect rates and predicting the number of field defects for a large commercial software system. We find that we are not able to accurately forecast field defect rates using a combined time-based and metrics-based approach, as judged by the Theil forecasting statistic. We suggest possible conditions that may have contributed to th...
متن کاملInvestigating the Role of Code Smells in Preventive Maintenance
The quest for improving the software quality has given rise to various studies which focus on the enhancement of the quality of software through various processes. Code smells, which are indicators of the software quality have not been put to an extensive study for as to determine their role in the prediction of defects in the software. This study aims to investigate the role of code smells in ...
متن کاملA Novel Regression Method for Software Defect Prediction with Kernel Methods
In this paper, we propose a novel method based on SVM to predict the number of defects in the files or classes of a software system. To model the relationship between source code similarity and defectiveness, we use SVM with a precomputed kernel matrix. Each value in the kernel matrix shows how much similarity exists between the files or classes of the software system tested. The experiments on...
متن کاملVerification of unemployment benefits’ claims using Classifier Combination method
Unemployment insurance is one of the most popular insurance types in the modern world. The Social Security Organization is responsible for checking the unemployment benefits of individuals supported by unemployment insurance. Hand-crafted evaluation of unemployment claims requires a big deal of time and money. Data mining and machine learning as two efficient tools for data analysis can assist ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018